calendar correo curso diplomado horas lugar modalidad in-company magister magisteres programa-avanzado quotes reloj telefono contacto contacto grad video
Search
Coincidencias exactas
Buscar por
Seleccionar todos
Magisters
Diplomados
Cursos
Profesores
Noticias
Páginas

Diplomado en Big Data y Ciencia de Datos

Herramientas para la producción, almacenamiento, procesamiento, análisis, interpretación y comunicación de grandes volúmenes de datos, para encontrar soluciones más exactas e innovadoras a muchos desafíos de las organizaciones.

Aprende en forma aplicada a tratar los datos para abrir nuevas a oportunidades de negocio o crecimiento.

Disponible para profesionales de todo Chile y Latinoamérica.

Antecedentes Generales

Próximamente Versión N°9
Mar y jue 18:30 a 21:45 hrs
148 horas cronológicas / 197 horas pedagógicas
$2.900.000 en Chile / USD 4000 resto del mundo ¡Consulta por descuento!

Todas las modalidades del programa (dual, presencial y streaming) tienen el mismo valor. Además, recomendamos preguntar las condiciones de cada una al momento de matricularse.


programas@ing.puc.cl

Para enfrentar los nuevos desafíos de datos, es necesario saber almacenar, administrar, procesar y analizar grandes cantidades de datos. La complejidad de los datos requiere nuevas y poderosas técnicas analíticas, por lo tanto, es crucial tener habilidades para comunicar e interpretar los resultados de este análisis. El manejo de estas habilidades cae bajo el dominio de los Data Scientists o Data Engineers profesionales que son altamente demandados por el mercado. El Diplomado en Big Data y Ciencias de Datos entrega competencias básicas para poder comenzar a trabajar con datos rápidamente o iniciarse en el camino hacia convertirse en un especialista en el futuro.

Este diplomado es de tipo presencial, complementado con actividades no presenciales y horas de estudio. Las clases son tanto de tipo expositivo como talleres aplicados con metodología hands on. Todas las actividades teóricas y prácticas buscan potenciar las habilidades de capacidad de análisis, toma de decisiones y el trabajo en equipo, a través de la presencia y participación del alumno en las sesiones de los cursos. El diplomado cuenta además con un seminario de introducción a big data, data science e inteligencia artificial.

Dirigido a:
Profesionales que deseen enfrentarse al desafío de sacar el mejor provecho posible a datos de gran tamaño y complejidad, a través de nuevas e innovadoras técnicas, con el objetivo de impactar la toma de decisiones en sus negocios. Está orientado a profesionales como Ingenieros, Economistas, y otros profesionales licenciados y/o con experiencia en áreas afines, que requieren conocimientos y habilidades en la materia.

Objetivos de aprendizaje:
- Analizar tecnologías clave referentes a la ciencia de datos y analíticas de negocios: minería de datos, aprendizaje de datos, técnicas de visualización, modelamiento predictivo y estadísticas.
- Identificar lenguajes de programación estadística y herramientas de big data, y aplicarlas en casos prácticos.
- Aplicar principios de ciencia de datos al análisis de problemas de negocio, utilizando herramientas y tecnologías de punta.

Contenidos del Programa

Al final del seminario podrás:
- Identificar las principales diferencias big data, data science e inteligencia artificial y qué esperar de estos.
- Reflexionar sobre el impacto de estas tecnologías y técnicas en los negocios y la vida actual.

Contenidos:
- Tendencias tecnológicas y la estrategia: big data, IoT, análisis de datos, inteligencia artificial y machine learning.
- Big data: Definiciones, arquitecturas , Map-Reduce, Hadoop, Spark.
- Bases de datos, data warehouses y data lakes.

Al final del curso podrás:
- Comprender las principales tecnologías asociadas a big data y reconocer bajo qué contexto utilizarlas.
- Diseñar arquitecturas de alto nivel en proyectos relacionados a business intelligence y big data.
- Generar ambientes de alta disponibilidad para proyectos de data science y big data.
- Identificar los conceptos de infraestructura big data en servicios de consumo on demand (servicios en la nube).

Contenidos:
- Tecnologías y servicios en la nube para BI, big data y data science.
- Procesamiento de datos eficiente con tecnologías big data.
- Diseño de arquitecturas de alta disponibilidad para BI y big data.
- Diseño y uso de infraestructura de alto rendimiento para algoritmos de data science.
- Estrategias y mejores prácticas en el desarrollo de componentes para arquitecturas de procesamiento masivo de datos.
- Diferencias entre soluciones de datos tradicionales y soluciones de big data.
- Gestión operativa de la infraestructura en un modelo de servicio continuo.

Al final del curso podrás:
- Revisar conceptos básicos de programación usando el lenguaje R.
- Usar el lenguaje R como una herramienta para analizar datos.
- Utilizar los sistemas gráficos de R para visualización de datos.
- Analizar conjuntos de datos utilizando los principios del análisis exploratorio de datos.
- Explicar la información visual contenida en los gráficos que generan R.
- Exponer los resultados de un análisis de datos.

Contenidos:
- Conceptos generales de programación en R: variables, estructuras de control, condicionales.
- Funciones y paquetes.
- Vectores y matrices.
- Listas.
- Data frames.
- Importación, limpieza y filtrado de datos.
- Dataframes: construcción y mezcla.
- Visualización gráfica.
- Análisis estadístico de datos con R: población y muestreo, tipos de datos, tablas de frecuencias, estadísticos descriptivos, coeficiente de posición y dispersión, errores de los procesos de medición, aplicaciones.
- Distribuciones de probabilidad.
- Regresión lineal con R.
- Regresión logística con R.
- Series de tiempo.

Al final del curso podrás:
- Identificar las principales teorías y prácticas de la emergente área de minería de datos.
- Desarrollar soluciones a problemas reales de big data y ciencia de datos que involucren la necesidad de técnicas de minería de datos.
- Implementar soluciones usando herramientas de software de minería de datos aplicándolas en datos reales.

Contenidos:
- Introducción: El concepto, el proceso y los problemas en que es relevante.
- Análisis de la canasta de mercado y reglas de asociación.
- Clasificación: Árboles de decisión, K-vecinos cercanos.
- Clustering: K-Means, Mean-Shift y Clustering aglomerativo.
- Selección de modelos (hold out, cross validation).

Al final del curso podrás:
- Identificar la importancia de la visualización de datos.
- Aplicar los conceptos fundamentales de las técnicas de visualización, comunicación y diseño efectivo.
- Manejar técnicamente los principales programas de visualizaciones.
- Exponer los datos de manera gráfica.
- Implementar reportes y tableros de manera efectiva.

Contenidos:
Unidad 1: Teoría sobre visualización de datos
- Introducción: breve historia, disciplinas de comunicación gráfica e importancia de visualizar datos.
- La “des-Excelización” y democratización de datos en la empresa.
- Condiciones necesarias para una visualización: datos y caso.
- Objetivos de la visualización: Contenido vs usuario, acceso, interacción y actualización.
- Fuentes de información: sistemas transaccionales, sistemas web, datos públicos.
- Preparación de datos: integridad, calidad, homologación.
- Generalidades sobre tipos de datos: medidas, dimensiones.
- Atributos a usar en una visualización.
- Análisis de los tipos de gráficos más comunes para representar datos.
- Exploración visual de datos.
- Indicadores, reportes y dashboards.
- Presentación de las herramientas principales del mercado.
- Visualizaciones avanzadas: scripting.

Unidad 2: Visualización de datos aplicada
- Datos de empresa: reportes transversales a industrias y vistas especificas.
- Revisión de casos de uso de dashboards generales.
- Revisión de casos de uso específicos por industrias.
- Revisión de casos de uso por niveles de usuarios: analistas vs C-level.

Al final del curso podrás:
- Evaluar oportunidades de negocio accionables a partir del análisis de datos.
- Aplicar los conceptos y métodos fundamentales de data science a problemas reales de negocio, interpretando adecuadamente los resultados y generando acciones de valor agregado.
- Desarrollar modelos descriptivos, predictivos y prescriptivos sobre datos de diversas industrias.

Contenidos:
- La evolución de la ciencia de datos y el análisis predictivo para el apoyo a la toma de decisiones.
- Las características que definen a una organización data-driven.
- Cómo las empresas modernas están generando productos y servicios analíticos.
- Metodologías de análisis de datos y búsqueda de patrones.
- Generación de modelos descriptivos, análisis de casos reales y trabajo práctico.
- Generación de modelos predictivos y prescriptivos, análisis de casos reales y trabajo práctico.
- Cómo interpretar modelos analíticos para tomar mejores decisiones de negocio.

Al final del curso podrás:
- Identificar en qué consiste el aprendizaje automático o machine learning (ML) y aprendizaje profundo o deep learning (DL).
- Identificar situaciones y su contexto en las cuáles ML podrá resolver problemas de gran valor de negocio.
- Desarrollar un plan de implementación de proyectos y/o capacidades de ML en una empresa, analizando y evaluando infraestructura, servicios, y disponibilidad de datos.
- Proponer un plan estratégico de desarrollo de tecnología basada en ML, alineado con la estrategia corporativa.

Contenidos:
Aprendizaje automático supervisado
- Modelos de ML, capacidades y características, así como ejemplos de aplicación.
- Metodología de desarrollo de modelos.
- Tratamiento y refinamiento de datos.

Aprendizaje profundo supervisado
- Conceptos esenciales y diferencias con ML más básico.
- Redes neuronales convolucionales y redes neuronales recurrentes.
- Análisis dimensional, entrenamiento, y tratamiento de grandes datos.

Aprendizaje automático no-supervisado
- Diferentes modelos como K-Means, HDBSCAN, Restricted Boltzmann Machines, entre otros.

Aplicaciones Industriales
- Clasificación, predicción, y recomendación, en contextos industriales y retail.
- Procesamiento de lenguaje natural, en atención de clientes y ámbito legal.

El futuro inmediato en ML y DL
- Hacia el razonamiento artificial.

Nota: El orden de los cursos dependerá de la programación que realice la Dirección Académica

Cuerpo Académico

Testimonios

"El diplomado incentiva a buscar nuevos horizontes en tu profesión y nuevas formas de contribuir con las herramientas que son entregadas"

Luis Astorga

Diplomado en Big Data y Ciencia de Datos



"Obtendrás una mayor ventaja competitiva para hacer frente a esta nueva revolución industrial"

Luis Tobar Lavín

Diplomado en Big Data y Ciencia de Datos



"Me dio las herramientas necesarias para introducirme en el mundo de la ciencia de datos y acceder a un nuevo puesto de trabajo en la empresa"

Felipe Navarro

Diplomado en Big Data y Ciencia de Datos



Solicita información y brochure aquí:

Este sitio está protegido por reCAPTCHA y se aplican la política de privacidad y términos del servicio de Google.

 

¿Te gustó este programa?
¡Compártelo en tus redes sociales!

Programas relacionados

Descargar Brochure
Necesitas ayuda? Conversemos
X