Python se ha convertido en una de las herramientas fundamentales para los profesionales de Machine Learning. En este contexto, saber usar librerías como scikit-learn, scipy, numpy, pandas o keras, constituye una competencia básica para el desarrollo de proyectos de este tipo en el entorno empresarial. Este curso entrega una base de conocimiento de los fundamentos que soportan estas potentes metodologías y herramientas, potenciando significativamente al participante para enfrentar desafíos que involucran inteligencia artificial y dándole una ventaja competitiva en el mercado laboral.
A través de este curso, los alumnos aprenderán los conceptos fundamentales asociados de Machine Learning tanto en su versión supervisada, como no supervisada. Dicho aprendizaje será acompañado mediante un conjunto de librerías de Python, las que permitirán pasar de la teoría a la implementación de forma amigable, y actualizada a las tecnologías utilizadas en el mercado.
La metodología de enseñanza y aprendizaje para este curso online consiste en técnicas metodológicas activas, donde el participante puede interactuar con sus pares y profesor-tutor a través de los recursos tecnológicos que provee la plataforma educativa virtual provista para el curso.
Dirigido a:
- Profesionales que por sus funciones deben manejarse en los modelos de Machine Learning.
Objetivo
- Implementar modelos de Machine Learning a través del lenguaje de programación Python.
Requisitos de ingreso:
Se recomienda contar con conocimientos básicos de programación, específicamente en lenguaje Python. En particular, debe ser capaz de utilizar controles de flujo, distintos tipos de datos y funciones, y diccionarios con Python.
Si desea evaluar su nivel, puede realizar una prueba opcional gratuita en este link: https://www.hackerrank.com/prueba-python
Se recomienda iniciar los test en orden, ya que van creciendo en dificultad. Los dos últimos tienen un nivel superior al requerido para ingresar al diplomado, y han sido instalados allí sólo como desafío. Si uno de los test falló, se recomienda revisar y ejercitar esos contenidos antes del inicio del programa.
A continuación, ponemos a su disposición algunos cursos optativos por si desea prepararse previamente al inicio del programa:
– MOOC “Introducción a la Programación en Python I: Aprendiendo a programar con Python”, disponible en el siguiente link: https://www.coursera.org/learn/aprendiendo-programar-python
– Curso “Herramientas de programación en Python para procesamiento de datos”, disponible en el siguiente link: https://teleduc.uc.cl/curso/herramientas-programacion-python-procesamiento-datos/
Es deseable contar con algún grado de conocimiento matemático (álgebra lineal, estadística básica y cálculo).
- Introducción al Aprendizaje de Máquina
- Tipos de problemas en Aprendizaje de Máquina
- Introducción a librerías del ecosistema de Data Science
- Tipos de variables
- Análisis descriptivo de variables
- Transformación de variables
- Visualización de variables
- Imputación de datos
- Aprendizaje supervisado
- Regresión lineal
- Regresiones polinomiales
- Regresión con penalización
- Regresión logística
- Naive Bayes
- Evaluación de clasificadores
- Árboles de decisión
- Random Forest
- Random Forest para regresión
- Introducción a las redes neuronales artificiales
- Tecnologías para desarrollo de redes neuronales artificiales
- Redes neuronales artificiales
- Aprendizaje no supervisado
- K-Means
- Cluster jerárquico
- Evaluación de clusters
- Reducción de dimensionalidad
¿Te gusta esta publicación?
Comparte esta publicación