calendar correo curso diplomado horas lugar modalidad in-company magister magisteres programa-avanzado quotes reloj telefono contacto contacto grad video
Escuela de Ingeniería
Coincidencias exactas
Buscar por
Seleccionar todos
Magisters
Diplomados
Cursos
Mooc
Profesores
Noticias
Páginas

Técnicas de Big Data para Machine Learning (online)

Un efectivo análisis de fuentes de información masiva, ofrece la oportunidad de obtener valiosa información en distintos ámbitos, pero también importantes desafíos.

¡Aprende a manipular y usar gigantescos volúmenes de datos, a través de técnicas y sistemas computacionales de alto rendimiento!

Antecedentes Generales

01/10/2024 (versión N°7)
75 horas totales (35 horas directas y 40 horas indirectas)
$550.000 en Chile / USD 612 resto del mundo
¡Consulta por descuento!
Tutor de apoyo permanente
Tutor de apoyo permanente
4 clases sincrónicas
1 clase sincrónica
Cuestionarios de selección múltiple
3 cuestionarios de selección múltiple
Proyectos aplicados
3 proyectos aplicados
Material multimedia de apoyo
Material multimedia y de apoyo
programas@ing.puc.cl
(+56) 9 5504 4516 - (+56) 9 3353 0870

Grandes repositorios de datos han comenzado a surgir en diversos ámbitos de nuestra sociedad. Estos corresponden a fuentes de información masiva, diversa y distribuida, cuyo análisis efectivo ofrece la oportunidad de obtener valiosa información en distintos ámbitos del quehacer social. Sin embargo, esta gran oportunidad presenta también grandes desafíos debido a la incapacidad de las aplicaciones tradicionales para el manejo de grandes volúmenes de datos.

El presente curso está diseñado para abordar la problemática de Big Data desde la perspectiva del uso de herramientas de manipulación de grandes cantidades de datos y en la aplicación de técnicas de Machine Learning y sistemas computacionales de alto rendimiento sobre grandes fuentes de datos distribuidos.

La metodología de enseñanza y aprendizaje para este curso online consiste en técnicas metodológicas activas, donde el participante puede interactuar con sus pares y el profesor-tutor a través de los recursos tecnológicos proporcionados por la plataforma educativa virtual destinada para el curso.

Dirigido a:
- Profesionales que necesiten adquirir las competencias necesarias para construir aplicaciones de Big Data y Machine Learning usando las herramientas del ecosistema Hadoop y Apache Spark.
- Interesados en el área de Ciencia de Datos que deseen adquirir habilidades para recolectar y analizar grandes volúmenes de datos.

Resultado de aprendizaje general
- Aplicar técnicas de Machine Learning que puedan escalar al caso de grandes fuentes de datos distribuidos.

Resultados de aprendizaje específicos
- Identificar la problemática y particularidades del manejo de grandes volúmenes de dato en diferentes contextos.
- Distinguir los principios, bases técnicas y herramientas del ecosistema Hadoop.
- Utilizar las herramientas del ecosistema Hadoop para el manejo de volúmenes gigantescos de datos.
- Reconocer el esquema de trabajo Apache Spark para el procesamiento de datos de propósito general.
- Utilizar las principales herramientas del framework Spark para análisis de datos y aplicación de técnicas de Machine Learning.
- Aplicar herramientas de visualización para facilitar la interpretación de resultados.

Requisitos de ingreso:
Se recomienda contar con conocimientos básicos de programación y de comodidad en manejo de terminal (consola). Para Apache Spark, se enfocará el curso específicamente en lenguaje Python. En particular, debe ser capaz de utilizar controles de flujo, distintos tipos de datos y funciones, y diccionarios con Python.

Si desea evaluar su nivel de Python, puede realizar una prueba opcional gratuita en este link: https://www.hackerrank.com/prueba-python

Se recomienda iniciar los test en orden, ya que van creciendo en dificultad. Los dos últimos tienen un nivel superior al requerido para ingresar al diplomado, y han sido instalados allí sólo como desafío. Si uno de los test falló, se recomienda revisar y ejercitar esos contenidos antes del inicio del programa.

A continuación, ponemos a su disposición algunos cursos optativos por si desea prepararse previamente al inicio del programa:
- MOOC “Introducción a la Programación en Python I: Aprendiendo a programar con Python”, disponible en el siguiente link: https://www.coursera.org/learn/aprendiendo-programar-python

- Curso “Herramientas de programación en Python para procesamiento de datos”, disponible en el siguiente link: https://teleduc.uc.cl/curso/herramientas-programacion-python-procesamiento-datos/

Contenidos del Programa

- Introducción a Big Data
- Instalación de herramientas Hadoop

- Hadoop MapReduce
- Apache Hive
- Apache Pig

- Programación en Apache Spark

- Apache Flume
- Spark Streaming
- Spark SQL

- Spark MLLIB: Algoritmos supervisados
- Spark MLLIB: Algoritmos no supervisados

Cuerpo Académico


¿Te gusta esta publicación?

Comparte esta publicación


Técnicas de Big Data

Solicita información y brochure aquí:

Al momento de inscribirme autorizo a la Escuela de Ingeniería UC para mantener y tratar mis datos personales, todo conforme a la Ley Nº19.628, “Sobre Protección de la Vida Privada”. Revisa las Políticas UC aquí.
Este sitio está protegido por reCAPTCHA y se aplican la política de privacidad y términos del servicio de Google.

 

20% Exalumnos y colaboradores UC y DUOC, exalumnos de Educación Profesional de Ingeniería UC, Tarjeta vecino Providencia, Las Condes, y Convenio Ingeniería.
15% Funcionarios de servicios públicos.

Programas relacionados

Descargar Brochure
Necesitas ayuda? Conversemos